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Netherlands 
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Abstract. Bonding of large clusters by surface reactions can be modelled by Smoluchowski's 
coagulation equation with coagulation rates K ,  = (ij)" with w = ( d  - l ) /d  in d-dimensional 
systems. It is shown that the cluster size distribution for large clusters well below the 
gelation transition has the form ck - k- ' tk  (k  +a) where 0 = 2w.  Results are compared 
with those from lattice theories and from the Flory-Stockmayer theory. 

For the models K, = %Pj"  + i'jF) with p, v < 1 one finds B = p + v ;  for K,, = ij'" +ji" 
with -1 s w < 1 one finds B = & I  + U )  and for K, = ij one has 0 =;. 

1. Introduction 

Smoluchowski's coagulation equation describes cluster growth due to coagulation 
processes through the following equation (Drake 1972): 

m 

which usually has to be solved with monodisperse initial conditions, Ck.0) = & I .  The 
size distribution c k (  t )  denotes the time dependent concentration of clusters of size 
k (k-mers), and K ,  the rate constant for a coagulation reaction between an i-mer and 
a j-mer. 

Equation (1) can be used to model the kinetics of polymerisation (Stockmayer 1943, 
Ziff 1980). If the reactivity of a cluster is assumed to be independent of or proportional 
to the size of the reacting clusters (e.g. K ,  = 1, i + j  or z j )  then the coagulation equation 
yields the same results as the classical theories of Flory and Stockmayer. In recent 
years Leyvraz and Tschudi (1982) and Ziff et a1 (1982) have tried to improve upon the 
classical kinetic theories by considering the reactivity of a k-mer to be proportional 
to its effective surface area 4, such that K ,  - sisj For large clusters one assumes s k  - k", 
where o is an exponent characterising the surface area, leading to K ,  = (U)". 

One of the most interesting results of these models has been the prediction that 
the cluster size distribution in the vicinity of the gel point t ,  behaves as C k ( t ) =  

k-'@(k"l t - ?,I) for k + and t + t,, where @(x) is some scaling function and where 
the exponents are 7 = o +; and CT = 7 - 2. If one assumes that the dimensionality of 
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the effective surface of a large cluster is one lower than the dimension d of the system, 
namely w = (d - l)/d, then the above value for the exponent 7 is both in two and three 
dimensions very close to the values obtained for percolating clusters in lattice theories. 
For the second exponent (T the relation (T = T - 2 holds universally in our model. The 
same exponent relation was recently found by Ricz and Vicsek (1983) in diffusion 
controlled deposition. It is, however, in sharp contrast with the results obtained from 
percolation theory. 

The purpose of the present paper is to apply these kinetic models with surface 
reactions to determine the cluster size distribution C k ( t )  of branched polymers in the 
sol phase, well below the gel point ( t  < t ,).  It is customary to represent the asymptotic 
decay of ck as (Stauffer et a1 1982) 

c k  -- Ak-' exp(-Cki) ( k  + a), (2) 

where A and C are some constants, and 6 and 5 are two geometric exponents, 
characterising the size distribution. An expression similar to (2) is being used for the 
cluster size distribution of lattice animals in percolation theories. 

To the present state of knowledge (Stauffer et a1 1982, p 113) these exponents, 
referring to the sol phase, are not related to the critical exponents at the gelation 
transition, and are independent of the extent of reaction, measured here by the 
parameter t .  One may therefore calculate these exponents from a solution of 
Smoluchowski's equation at short times with conveniently chosen initial conditions, 
here taken to be monodisperse. The results for 0 and 5, obtained in this manner for 
a large class of coagulation kernels K,, are expected to be independent of these special 
initial conditions, as they agree with special cases already known in the literature. 
Here we are referring first to the exponents for the coagulation kernels K,  = 1, i + j  
and ij, determined from the general solution C k ( t )  at arbitrary initial conditions (see 
e.g. Ziff et a1 1983), and secondly to the exponents determined by Lushnikov and 
Piskunov (1976) for the kernel K,j - i"j" from a similarity solution, that does not 
correspond to monodisperse initial conditions. We start by considering the initial 
growth ( t  + 0) for the model K, = (U)" with monodisperse initial conditions. Here 

ck(  f )  LI akofk-'( 1 +o(f)), (3) 

where a,,  = 1 and akO (k = 2,3, . . .) are determined from the recursion relation 

(k - l)ako = 1 K,jai,aJo. 
i+,=k 

At large values of k the coefficients decay asymptotically as 

(4) 

as will be shown below. Combination of (3) and ( 5 )  then yields an expression for the 
initial behaviour of Ck of the general form (2), from which 6 and C = 1 can be determined. 

More generally, we consider the Taylor series expansion 

where the coefficients akl can be obtained from the recursion relations (Hendriks et a1 
1983) 
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In 0 2 we consider the somewhat more general coagulation rates 

for different ranges of (p,  v)-values. In 0 3 we apply the results to branched polymers 
with K, - (zj)w and compare the results with those known in the literature. 

2. Asymptotics of solution of the recursion relation 

2.1. Case K,=~( i ” jV+jp i” ) (p ,  v < l )  

In order to determine the asymptotic solution of equation (4) we may try to substitute 
the ansatz ( 5 ) ,  and determine A and 6 self-consistently. The value of R is found to 
be proportional to a,, with an unknown factor of proportionality. We find it slightly 
more convenient to follow the method used by Hendriks et a1 (1983), and define the 
generating functions fA(x) for A = p, v, 0: 

The large-k behaviour of the akO follows from the nature of the leftmost singularity 
in the complex x-plane of any of the fA(x). We suppose that the leftmost singularity 
of fA(x) is located at x = xo= log R, and that this singularity in fo(x) is of the form 
(x , -x)~  ; then the dominant behaviour of fA(x) ( A  = p, v, 0) as xTx0 is given by 

fA(X)=aA + . . . + b ~ ( x o - X ) “ - ~  + .... (10) 

bA = boT(A - a ) / r ( - a ) ,  

The coefficients b, and bo are according to Hendriks et a1 (1983) related as 

( 1  1) 

where the exponent a may be positive or negative, and (10) corresponds to an asymptotic 
decay of the coefficients in (9): 

a k O  (bO/T(-a))k-”-’ e-ho ( k - , c o ) .  (12) 

fb - f o  = 2J“ (13) 

The three generating functions fA(x) (A = p, v, 0) are related as 

as a consequence of (4) and (8). 
Next we insert the ansatz (10) into (13) and equate the most dominant terms for 

xTxo on both sides of the equation. For p or v larger than unity no consistent solution 
of the form (10) can be found. For p, v <  1 the exponent a in (10) is found to be 
a = p + v - 1, and bo = fr (  1 - p - v)/ B( 1 - v, 1 - p) .  Comparison of (12) and (5) yields 
then for p, v < 1 

(14) A-‘ = ‘ B  e = p + v ,  2 ( l - p ,  l - v ) ,  

with xu = log R left undetermined. Equation (14) also contains the exactly solved model 
K,, = 1 (Drake 1972) and the models K, =$(i”  +ju), for which the size distribution 
Ck(t) can be determined sequentially as a function of a transformed time variable 
(Hendriks et a1 1983). We also note that the constant A in (14) vanishes when p and 
v approach unity from below. 
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These analytical calculations have been confirmed for p = v = w by numerically 
solving the recursion relations. These calculations also yield the radius of convergence 
R in ( 5 ) .  The results are listed in table 1. 

Table 1. Theoretical and numerical values for 8, A and R for the model K ,  
w = 0(0.2)1. For w + 1 the numerical accuracy is lowered because of the relative importance 
of the correction term to equation (2). 

0.0 0.0000 0.0 2.0000 2.0000 2.0000 2 
0.2 0.4003 0.4 1.3210 1.3184 1.4555 ? 
0.4 0.8010 0.8 0.8336 0.8281 1.0529 ? 
0.6 1.2033 1.2 0.4842 0.4732 0.7554 ? 
0.8 1.6165 I .6 0.2370 0.2105 0.5348 ? 
1 .o 2.4998 2.5 0.3985 0.3989 0.3679 0.3679 

An independent confirmation of (14) comes from the work of Lushnikov and 
Piskunov (1  976), who have obtained similarity solutions of Smoluchowski's equation 
for the kernel (8) in the triangular region { p  + v < 1 ; p, v > 0}, where no gelation 
occurs (see 9 3). These authors have shown that c k  behaves at fixed t and for k + 03 

as c k ( t )  = Ak-p'-Y exp(-Ck). However, these similarity solutions correspond to some 
polydisperse initial distribution, and not to Ck(0) = 8kl. 

Our conclusions for the case p, v >  1 are consistent with McLeod's result for the 
special case p = v = w > 1, showing that the generating function (9) with A = w does 
not exist, as it has a zero radius of convergence R = exp(xo). 

2.2. Case K ,  = ij" +ji" (Iwl C 1) 

When max(p, v) = 1, the derivation of (14) is no longer valid, and the case K ,  = 
ij" +jiw ( w  s 1) remains to be investigated. This class of models contains the exactly 
solved cases w = 0 , l  (Drake 1972) and w = -1 (Lushnikov and Piskunov 1975). In the 
range - 1 s w < 0, Lushnikov and Piskunov have already determined the large-k 
behaviour of aka, using a method similar to ours. Here we discuss the whole range of 
w-values. 

For the present class of models equation (4) reduces to 

Again we try to solve this equation consistently in the vicinity of xo with fo and fw of 
the form (lo). Under the restrictions 0 < a < 1 and 0 < a - w < 1 consistency requires 
a, = 1 and a = i(1 -1-0) with 1,  whereas the coefficients b, and bo are left undeter- 
mined. Thus we have on account of (5) and (12) 

6 = i ( w + 3 )  

but the amplitude A and radius of convergence R = exp xo in ( 5 )  cannot be determined. 
Comparison of (14) and (16) shows that the present case, (p ,  v) = ( l ,  v) with v <  1, 

cannot be obtained as a limiting case from (p ,  v) with p t l .  The exponent is discon- 
tinuous on the border lines p = 1 and v = 1. 
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The above class of models with Iw/  < 1 contains the case K ,  = i +j (with w = 0), 
that has been exactly solved by Golovin and Scott (see Drake 1972). Here (1 5) becomes 
a differential equation for fo(x). Its solution, that satisfies the boundary condition 
fo(x) = ex as x + -CO, is implicitly given by the relation x = lnfo - f o e  Then the coefficient 
UkO of tk  = exp(kx) in (9) is determined by 

akO = (27ri)-' d(t-k-'fo(t) = k k - ' /  k !  (17) f 
where the contour integral has been evaluated by changing to fo as a new integration 
variable. The large-k behaviour of (17) gives &02: ( 2 ~ ) - " ~ k - ~ ' *  ek ( k +  CO), so that the 
coefficients in ( 5 )  are given by A=(27r)-"*, R = l / e  and e = $  in agreement with (16) 
for w = 0. 

The derivation of (1  6) is not valid for w = + 1 or w = - 1, corresponding to the model 
K ,  = ij, solved by McLeod (1962) and = i/j +j/i, solved by Lushnikov and Piskunov 
(1975). In the case w = 1,  equation (15) reduces to a simple differential equation for 
fi(x) with solution x = lnf, -fl, and we obtain for the coefficient 

kako = (27ri)-' d t t -k - ' f l ( t )  = kk-'/k!. (18) 

~kO'(27r)"*k-~'* ek (19) 

I 
This yields for large k 

leading to A = (2~) - "* ,  R = ( l /e)  and 8 =;. Note that this result is not contained in 
(16) for w = 1. Thus, 6 is also discontinuous in ( p ,  v) = (1, 1) along the lines p = 1 and 
v =  1. 

For w = -1 equation (15) reduces to a differential equation forfl(x ), wheref-, =fo. 
The solution, satisfying f-'(x) = ex as x + -CO, is 

x=- r -E , ( fo )  (20) 
where y is Euler's constant and E,(z) = y - l  e-' dy. The RHS of (20) is a monotonically 
increasing function of fo, approaching xo = - y  as f0+ CO. Thus, the radius of conver- 
gence R in (5) equals exp(xo) = exp(-y). At the singular point x = - y the function 
fo(x) approaches 03. We determine the behaviour of fo(x) in the vicinity of this 
singularity from the large-fo behaviour of El( fo) ,  namely 

(21a) 

(2 1 b) 

(22) 
so that the parameters in (5) become A =  1, R = exp(-y) and 8 = 1 .  For the present 
case the exponent 8 in (16) is continuous along the lines ( p ,  1) and (1, v) as pi-1 and 
vL-1 respectively. One can of course write an exact expression for QkO from (20) in 
the form of a contour integral, namely 

-x-  7 = EI(fO)=.fi' exp(-fo>[l +O(f i '> l  

fo(x) -- ln[-(x + y) ] - '  -1n In[-(x + y ) ] - ' + .  . .. 

UkO= k-I eky{l +O[(h k)-']} 

or inversely for xT-y: 

This leads to the following large-k behaviour: 

dz Y k  exp[-z + kb(z)] (23a) 
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where b ( z )  is an analytic function at the origin and defined as 
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m 

b ( z )  = y +In z + E , ( z )  = c ( - )““z” / (nn! ) .  (23b) 
n = l  

However, this expression cannot be evaluated any further. 
For the case OJ < - 1, we have not been able to find any consistent solution of the 

form (1 0) or its modifications including powers of In x. 
The results of this section for the exponent 8 are summarised in the diagram of 

figure 1. It should be noted that 8 is discontinuous on the lines p = 1 and v = 1, when 
approached from p, v < 1 ; and moreover discontinuous in the point (1,l) when 
approached from (p, 1) with p < 1 or from (1, v) with v < 1. For instance, for the well 
studied coagulation kernel K ,  = ( i j ) ”  (w < 1) we have 8 = 2w, but 8 =: for K, = ij. 
Therefore, the model K ,  = ij and, more generally, the models K ,  = A + B( i + j )  + Cij 
with C # 0 (which contain Flory’s polymerisation models A,RB’ showing a gelation 
transition (Cohen and Benedek 1982)) seem to be rather isolated soluble cases, the 
results of which cannot be generalised directly to more general kernels, such as in (8). 

Figure 1. The exponent O(p, v) for the model K ,  = i”j’ +i”j’ in the (p, v) plane. Question 
marks on the lines (-.-) and in the regions p > 1 or v > 1 indicate that no consistent 
solution of the form (5) can be found. For (p, v) inside the region {p + v > 1 ; p, v C 1) 
the model yields a gelation transition. 

In figure 1 we have also indicated the triangular region { p  + v > 1 ; p, v S 1) of the 
(p,  v) plane which contains coagulation kernels (8) leading to a gelation transition, as 
has been discussed by Hendriks et a1 (1983). 

Before closing this section we note that the dominant large-k behaviour of a k /  ( 1  = 
1,2, . . .) can be determined from the recursion relations (7), and one easily verifies by 
direct substitution that for fixed 1 and k+co 

(24) &/= ako-(bk)’{l (-Y +O(k-’)} 
I !  

where akO for k+co  has been evaluated in the preceding part of this section and b is 
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left undetermined. Note that only the first term in (7) contributes to the dominant 
large-k behaviour. 

It is tempting to insert (24) into (6 ) ,  and interchange the small-t and large-k limits, 
to find 

Ck(t) a k , t k - '  exp(-bkt). (25) 

However, the large-k behaviour in (24) is non-uniform in 1. We may not conclude that 
(25) represents the large-k behaviour of Ck(t) at a fixed point in time. 

3. Application and discussion 

As argued in 0 1, the kernel K ,  = (0)" can be used to model the bonding processes in 
branched polymers, where the surface exponent w is a fixed model parameter with the 
same value in the sol and gel phase. For this model we have found in Q 2 that the 
cluster size distribution takes the form (2) well below the gel point, where the exponents 
are given by l =  1 and 0 = 2w, on account of (14) and (8). 

If we assume that the dimensionality of the effective surface of a large cluster is 
one lower than the dimension of the system, then w = (d - l)/d, leading to @(d) = 

Another possible choice for w is based on the radius of gyration Rk of a branched 
polymer. This quantity describes the linear dimensions of a cluster and behaves 
asymptotically as Rk - kP ( k +  00). It leads to a surface exponent w = ( d  - 1)p. 

This alternative is somewhat inconsistent, because w is a fixed model parameter, 
whereas p has one value p< in the sol phase (which is very accurately given by Flory's 
formula pF = 5/(2d +4)), a different value pc at the gel point, and still another value, 
p, = l /d,  in the gel phase (Stanley et a1 1982). 

We have listed the &values in table 2 for d = 2,3 and for two choices of w,  and 
compared the results with the supposedly exact values, found by Parisi and Sourlas 
(1981), and with the classical value e = $ .  The results, obtained with the choice 
w = ( d  - l ) /d  based on physical grounds, show a considerable improvement when 
compared with the classical value. Note that Parisi and Sourlas' exact results lead to 
the exponent relation 6 = ( d  - 2)p, + 1. 

2(d - l)/d. 

Table 2. 6-values according to the various approaches 

2 1 0.625 I .o 2.5 
3 I .33 I 1.5 2.5 

Table 3. 7-values according to the various approaches. 

2 2.00 2.03 2.06 2.5 
3 2.17 2.30 2.20 2.5 
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To complement the survey of results obtained from the kinetic model K ,  = 
we recall that the analogue of 8 at the gel point, called 7, is given by T = w +f for 
w > f, and we have listed in table 3 (Ziff er a1 1982) the r-values based on the same 
choices of w as above, together with their classical value and their exact value, 
numerically obtained from lattice theories. Gelation occurs only for f < o d 1. 
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